

# Use of Radiolabeled Platelets for Assessment of In Vivo Viability of Platelet Products

May 3, 2004

National Institutes of Health, Bethesda, MD

Wm. Andrew Heaton MD,

Vice President/Chief Medical Officer, Chiron Blood Testing

### Desirable Platelet Radionuclide Tracer Characteristics

- > Objective
  - Internal or external quantitation of platelet kinetics.
- Radionuclide Characteristics
  - Readily detectible.
  - Physiologic element.
  - Non toxic to cell/patient.
  - No perturbation of study.

- Minimal reutilization/elution.
- Ease of administration/sampling.
- Selective tracer uptake.
- Homogeneous cellular distribution

### Radionuclides - Principles & Practice

#### **Principle**

| Representative Dose                                                               | Stable Donor          | <b>Defined Distribution</b>                             | Sample Precision                                           |
|-----------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------|------------------------------------------------------------|
| Harvest Representative Aliquot                                                    | Variable Turnover     | Estimated Volume                                        | Constant Volume                                            |
| No Selective Process Loss  Consistent Tracer Uptake                               | Variable Cell Quality | Assumes Consistency Affirm Steady State                 | Consistent Sample Timing                                   |
| No Label Damage/Elution                                                           |                       |                                                         | Accurate Counting                                          |
| <b>Practice</b>                                                                   |                       |                                                         |                                                            |
| 43mL Whole Blood                                                                  | Time Paired Studies   | Nomogram Blood<br>Volume Estimates                      | Weighed 2mL Samples                                        |
| 10- 20 ml Platelet Concentrate                                                    |                       |                                                         |                                                            |
| Tube Processing >80% recovery Uptake                                              | Concurrent Studies    | Dilute 3 Standards<br>1:5000                            | Correct for Injectate<br>Plasma Elution                    |
| 60- 80% <sup>111</sup> In & 20– 40% <sup>51</sup> Cr<br>1 X Soft + 2 X Hard Spins |                       | 5 -10% Immediate<br>In-vitro Elution<br>Platelet Counts | Use 10 Day RBC Activity<br>Correction<br>Count to 2% Error |



### <sup>111</sup>In & <sup>51</sup>Cr Labeling Characteristics

|                             | <sup>111</sup> In -Oxine                 | 51Cr – Sodium Chromate           |
|-----------------------------|------------------------------------------|----------------------------------|
| Desirable Emission          | 90=94% @ 172 & 247 kev                   | 9% @ 320 kev                     |
| Tissue Selective Uptake     | Plt >> WBC >>> RBC                       | RBC >>> Plt >> WBC               |
| Non Toxic (Target/Patient)  | Oxine @ 3-6 ug/mL                        | Chromate < 10 <sup>4</sup> molar |
| <b>Detection Parameters</b> | 171 kev → ~72% eff<br>245 kev → ~53% eff | 320 kev → ~3% eff                |
| Elution (RBC & Plt)         | 8%/day & 11% @ day-1                     | 1-2%/day & 6% @ day-1            |

#### <sup>111</sup>In & <sup>51</sup>Cr Tracer Characteristics

**Administration Ease** 

Clearance

Reutilization

**Cell Uptake** 

**Half Life** 

**Counting Technology** 

**111In - Oxine** 

| Transferrin Avidity (Wash)

Plasma T ½ ~10 Hours

Nil post oxine ↓

Cells Equivalent (80% cytosol)

2.8 days → rapid counting

Correct for count times

51C – Sodium Chromate

Activity  $\geq$  20 uCi/ug Cr ( Plt Count)

R/E → Excretion @ 3%/day

Nil post chromate → Chromic

Energy Dependent (ATP associated)

28 days → delayed counting

3" crystal Nal detector=~ 2x Eff.

## Detection Implications of <sup>111</sup>In & <sup>51</sup>Cr Physical Characteristics

- > Low 51Cr photon yield mandates high efficiency (NaI) counters.
- > Photon scatter requires <sup>111</sup>In sum peak counting.
- > 51Cr may be counted directly with scatter correction.
- > 28 day <sup>51</sup>Cr T ½ allows late counting post <sup>111</sup>In decay.
- Low dose (low count) infusions need long count times.
- > 2.8 day <sup>111</sup>In T ½ requires elapsed time count correction.
- > Rapid post sample processing and counting is desirable.
- > Standard counts should be diluted to  $\geq$  sample counts.

## Development of a Double Label <sup>111</sup>In/<sup>51</sup>Cr Assay Method

- > Purpose
  - Develop comparable <sup>111</sup>In & <sup>51</sup>Cr platelet techniques for consistent results.
- > Study Plan
  - Evaluate relationship between in vivo & in vitro elution.
  - Evaluate <sup>111</sup>In labeling effects on platelet function.
  - Assess <sup>111</sup>In and <sup>51</sup>Cr RBC activity and evolution.
  - Develop corrections to support generation of equivalent outcomes.
- > Studies
  - Studies were performed using a similar tube/electrolyte method.
- > Procedure Development
  - Develop a procedure for simultaneous <sup>111</sup>In and <sup>51</sup>Cr platelet labeling.
  - Generate a simultaneous <sup>111</sup>In and <sup>51</sup>Cr infusion, sampling, and counting procedure.
  - Validate the essential equivalence of the two methods.

### Double Isotope Platelet Procedure Development – Labeling Process



## Development of a Double Label <sup>111</sup>In/<sup>51</sup>Cr Assay Method

- > Elution (A)
  - 63 In vivo/in vitro studies performed.
  - Early injectate, diluted injectate, and in-vitro/in-vivo elution analysis.
  - Injectate processing method developed → injectate correction.
- > BioDistribution & RBC Elution (B)
  - 15 simultaneous <sup>111</sup>In and <sup>51</sup>Cr imaging and kinetic studies performed.
  - 0, 5, 10 day stored CPD-PC concentrates studies.
  - In vivo whole body and organ uptake measured over 24 hours.
  - RBC activity quantitated over 10 days → RBC correction.
- > 111In/51Cr Double Label Validation (C)
  - 16 concurrent <sup>111</sup>In & <sup>51</sup>Cr 5 day PC storage studies.
  - Post infusion platelet, RBC/WBC, & plasma activity density separated.
  - Double manual apheresis cross over study design developed.
  - Validation study to define sample size requirements.

BJH 84:717:1993

### Double Label IIIn/51Cr Development Studies

(Study A) In Vivo Plasma Activity (Mean + SD)

| Label Uptake                          | 72 <u>+</u> 8%           | 42 <u>+</u> 10% |
|---------------------------------------|--------------------------|-----------------|
| <u>Labeling Loss</u>                  | 35 <u>+</u> 9% (similar) |                 |
| In-vivo - Post Tx Plasma Activity (%) | <u> </u>                 | <u>⁵¹</u> C     |
| 5 Minutes                             | 5 <u>+</u> 1             | 3 <u>+</u> 2    |
| 1 Hour                                | 6 <u>+</u> 2             | 1 <u>+</u> .5   |
| 3 Hours                               | 6 <u>+</u> 2             | 0.8 <u>+</u> 7  |
| Invitro Plasma Activity               |                          |                 |
| Neat Injectate (2 hours)              | 3 <u>+</u> 3%            | 6 <u>+</u> 3%   |
| Diluted Injectate (2 hours)           | * 11 + 4%                | **9 + 4%        |

CHIRON BLOOD TESTING

<sup>\*</sup> In Vivo/In Vitro Correlation r = 0.82 \* (@ 3 hours) r = 0.77\*\* + (@ 5 minutes)

### Comparison of In Vitro & In Vivo 111 In Activity



*In vitro* <sup>111</sup>In plasma activity of diluted injectate in fresh whole blood and *in vivo* plasma activity.

### <sup>51</sup>Cr RBC Uncorrected & Corrected Recoveries



## Double Isotope Platelet Procedure – Elution & Plasma Correction

#### > Injectate

- Retain aliquot of <sup>111</sup>In-only and <sup>51</sup>Cr-only injectate for standards.
- Mix ~ 15uCi of injectates and retain an aliquot for standards.
- At the time of infusion, add 10uL injectate to 10mL fresh EDTA blood.
  - Centrifuge after 2 hours @ 37 °C & calculate elution fraction.
- Prepare 3 x 1 in 5000 individual & mix injectate standards.

#### > Samples

- Collect 7mL EDTA samples @ 3 hours, 7 samples/10 days.
  - Prepare 2mL weighed aliquots for WB counting, & centrifuge an additional 2ml for split counting to correct for plasma activity.
- Count individual, and mix standards; samples; splits to a 2% accuracy.
  - Correct standards for elution and samples for RBC & plasma activity.

## Corrected Post Transfusion IIIn & <sup>51</sup>Cr Platelet Kinetics

| Study B            | Storage Duration | <u>"'In</u>        | 51 <b>C</b>         |
|--------------------|------------------|--------------------|---------------------|
| % Recovery         | 0                | 65 <u>+</u> 13     | 64 <u>+</u> 12      |
|                    | 5                | 45 <u>+</u> 13     | 49 <u>+</u> 10      |
|                    | 10               | 24 <u>+</u> 13     | 29 <u>+</u> 12      |
|                    |                  |                    |                     |
| Survival (Hours)   | 0                | 194 <u>+</u> 27    | 184 <u>+</u> 30     |
|                    | 5                | 156 <u>+</u> 25    | 155 <u>+</u> 29     |
|                    | 10               | 72 <u>+</u> 53     | 63 ± 53             |
| Study (C)          |                  |                    |                     |
| % Recovery         | 5                | 66.1 <u>+</u> 10.6 | 65.6 <u>+</u> 10.9  |
| Survival (hours)   | 5                | 164.4 ± 25.5       | 164.4 <u>+</u> 31.5 |
| Integral (% hours) | 5                | 6026 ± 1185        | 5958 <u>+</u> 1240  |

BJH 80:539:1992

## Platelet In Vivo Kinetic Calculation Principles



### Sample Size – Concurrent vs. Separate

#### % Recovery (absolute %)

| <b>Detection Goal</b> | <u>10%</u> | <u>7.5%</u> | <u>5%</u> |
|-----------------------|------------|-------------|-----------|
| Separate              | 16         | 22          | 32        |
| Concurrent            | 5          | 6           | 8         |

#### **Survival – (Hours)**

| <b>Detection Goal</b> | 30 Hours | <u> 25 Hours</u> | <u> 20 Hours</u> |
|-----------------------|----------|------------------|------------------|
| Separate              | 16       | 22               | 32               |
| Concurrent            | 5        | 6                | 8                |

Table shows sample size required to detect a listed difference with 80% power and with alpha = 0.05.

### Storage Duration & <sup>111</sup>In Platelet Kinetics

- > Purpose
  - Evaluation of in vivo kinetics, storage duration, and in vitro parameters.
- > Design
  - 35 time separated paired IIIIn platelet kinetic studies.
  - Test (PAS) and control (CPDA-1) P.C. stored from 0.5 to 10 days
     @ 22 °C.
  - IIIIn studies performed with plasma correction.
  - Post transfusion recoveries (PTR), survival (numerical expected lifespan), and integral (area under curve) were quantitated.
  - Degree of exponential (random loss vs. senesce) estimated.
  - Relationship between in vivo and in vitro parameters compared.
  - In vitro measures included pH, HSR, ESC, ATP & lactate production.

Vox Sang 59:12:1990

## Storage Duration & <sup>111</sup>In Platelet Kinetics

| Days Stored | % Recovery     | <u>Survival</u><br>(Hours) | Shape Factor     |
|-------------|----------------|----------------------------|------------------|
| 0.5         | 55 <u>+</u> 10 | 189 <u>+</u> 24            | .38 <u>+</u> .17 |
| 5           | 41 <u>+</u> 11 | 146 <u>+</u> 41            | .55 <u>+</u> .30 |
| 7           | 37 <u>+</u> 11 | 107 <u>+</u> 39            | .83 <u>+</u> .14 |
| 10          | 23 <u>+</u> 9  | 74 <u>+</u> 43             | .87 <u>+</u> .14 |
| 14          | 9 <u>+</u> 8   | 51 <u>+</u> 24             | .88 <u>+</u> .09 |

#### **Implications**

- Both PTR and survival decreased with storage duration.
- Donor variability mandated double label studies.
- Lactate, morphology, and pH independently correlated with <sup>III</sup>In kinetics.

Vox Sang 59:12:1990

### **Storage Duration & Non Linear Loss**



Vox Sang 59:12:1990

## Double Label <sup>111</sup>In Fresh & <sup>51</sup>Cr – Stored Platelet Study Design

- > Paired in vivo <sup>51</sup>Cr studies were performed ~ 28 days apart.
- > 18 whole blood donations were randomly processed into BC-PC or PRP-PC.
- > Following 5 days of 22 °C storage, <sup>51</sup>Cr in vivo studies performed.
- > Concurrent fresh <sup>111</sup>In and stored <sup>51</sup>Cr studies performed.
- > Test vs. control outcomes were compared.
- > Stored Cr values were expressed as a % of fresh In values to give Relative Recoveries and Survivals.
- > Platelet in-vitro studies included cell counts, pH, O2 & glucose consumption, lactate production, ATP, morphology, HSR, ESC.
- Platelet GP1b and LDH release rates were also measured.

**Transfusion 32:113:1992** 

### In Vivo Variables of fresh <sup>111</sup>In-labeled & 5-day stored <sup>51</sup>Cr-labeled PRP-PC\* & BC-PC†

#### Platelet Recovery (%) ±

|        | "In               | <sup>51</sup> Cr | <sup>51</sup> Cr/ <sup>III</sup> In |
|--------|-------------------|------------------|-------------------------------------|
|        | <u>Fresh</u>      | 5-day-stored     | relative (%)                        |
| PRP-PC | 60 <u>+</u> 7     | 49 <u>+</u> 10   | 81 <u>+</u> 9                       |
| BC-PC  | 64 <del>+</del> 6 | 53 <u>+</u> 8    | 85 <u>+</u> 10                      |

#### Platelet Survival ±

|        | "In                 | <sup>51</sup> Cr | <sup>51</sup> Cr/ <sup>III</sup> In |
|--------|---------------------|------------------|-------------------------------------|
|        | Fresh               | 5-day-stored     | relative                            |
|        | <u>(hrs)</u>        | (hrs)            | <u>(%)</u>                          |
| PRP-PC | 210 <u>+</u> 22     | 16 <u>2 +</u> 29 | 77 <u>+</u> 10                      |
| BC-PC  | 209 <del>+</del> 30 | 163 <u>+</u> 20  | 79 <u>+</u> 11                      |

<sup>\*</sup> Platelet-rich plasma-platelet concentrates.

<sup>†</sup> Buffy coat-PCs.

**<sup>#</sup>** Mean **+** SD.

## Paired Concurrent Comparison of <sup>111</sup>In Fresh & <sup>51</sup>Cr Stored PC



### Simultaneous Paired <sup>111</sup>In & <sup>51</sup> Cr Reduced Platelet Volume Study Design

- Apheresis into standard and reduced volume P.C.
- > 20 unit study with randomized order labeling with <sup>111</sup>In and <sup>51</sup>Cr.
- > Simultaneous infusion of ~ 15uC, <sup>51</sup>Cr and <sup>111</sup>In labeled platelets.
- > Elution and red cell correction applied.
- > Relative Recoveries (>35mL) > % Recoveries = 99 (95 103)
  - $\rightarrow$  Integral (% .days) = 99 (96 101)

| In Vivo Mean (95% CI)<br>Values | 30 – 34mL P.C. | 35 – 50mL P.C.           |           |
|---------------------------------|----------------|--------------------------|-----------|
| % Recovery                      | 80 (69-92)     | 99 (95-103)              | p = .005  |
| Survival (days)                 | 89 (83-94)     | 103 (98-107)             | p = .0005 |
| Integral (% days)               | 81 (69-93)     | 99 (96-101) <sup>°</sup> | p = .012  |

## In Vivo Post Transfusion Functional Recovery Study



## Ex-Vivo Aggregation of <sup>51</sup>Cr Stored Platelets



Percent <sup>111</sup>In labeled fresh platelet response

## Post Transfusion Functionality of <sup>111</sup>In Platelets



<sup>111</sup>In labeled fresh platelets as function of post-infusion time.

N = 12

No significant difference over 5 Days in vivo

111 In Aggregation = Numerical Aggregation

## Double Label <sup>111</sup>In & <sup>51</sup>Cr In Vivo Studies

- Described a Double Label Method Identifying
  - Labeling issues relative to selective tracer uptake.
  - Technical issues relative to differential radionuclide counting.
  - Procedural issues relative to result acquisition/interpretation.
- Reviewed Some of the Physiological Observations Associated with PC Storage
  - Storage associated loss of in vivo efficacy.
  - Sites of storage damaged platelet uptake.
  - Chronological variation in platelet turnover.
- > Proposed a Study Model to Allow Accurate Kinetic Analysis
  - Provided insight into P.C. functional recovery.
  - Suggested a driver to platelet senescence.